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Sensitivity Anaylsis

@ Sensitivity Analysis Methods compute derivatives of outputs with
respect to inputs.

@ With the adjoint, we go backwards in time to find the sensitivity of
outputs to inputs.

@ The computational cost of the Adjoint method DOES NOT scale
with the number of gradients computed. B
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Adjoint Flow-Field

Sensitivities propagate upstream
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From Wang and Gao, 2012
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Sensitivity Analysis Applications

Aerodynamic Shape Optimization

From Jameson 2004 CQ_
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Sensitivity Analysis Applications

Error Estimation and Mesh Adaptation
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Sensitivity Analysis Applications
Other Applications

From University of Miami CCS

@ Flow Control
@ Uncertainty Quantification

@ and many more... _
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Motivation

High Fidelity Model Issue

From DOE

@ As computers become more powerful, high fidelity turbulence
models such as LES will become increasingly popular.

@ High fidelity models capture the chaotic nature of turbulent flows.

@ However, traditional sensitivity analysis methods break down BT
when applied to chaotic fluid flows. |
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Chaotic, Turbulent Flow-fields
Unsteady Wakes
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From E. Nielsen ==
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Chaotic, Turbulent Flow-fields

Aeroaccoutics

LEFT: From E. Nielsen RIGHT: From TU Berlin
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Chaotic, Turbulent Flow-fields
Mixing

B

From J. Larsson, Stanford University
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Traditional Forward Sensitivity Analysis

@ Interested in the long time averaged quantity J, governed by a
system of equations f with some design parameter(s) s:

ou

_ T
J:/0 J(u, s)dt, i f(u,s)

; _ ou.
@ Solve the tangent equation for v = §2:

ov_of, ot
ot  ou ds

@ Compute the sensitivity of J to s:

dJ’ Tod  aJ
0 B A
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Overview
Main Issue

@ For chaotic systems, this does not work, because:
dJ> i dJ’
ds T—oo dS
@ This is because the tangent solution v diverges for chaotic

systems. Counter-intuitively, increasing T can exacerbate this
divergence.

@ Adjoint sensitivity analysis breaks down for a similar reason.

@ This property of chaotic systems has been shown by Lea et al. for
the Lorenz Attractor.

@ This problem exists for chaotic PDEs as well.
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Chaotic Sensitivity Analysis Issues Kuramoto-Shivashinsky Equation

Chaotic KS Equation Solution

ou  ou 1d%u du

ot - Yax T Rox2  oxt

@ R = 2.0 for Chaos in space and time.
)
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Objective Function
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Kuramoto-Shivashinsky Equation
Tangent and Adjoint Solutions
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@ Both Tangent and Adjoint solutions diverge exponentially for the
KS equation. B
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Chaotic Sensitivity Analysis Issues NACA 0012

NACA 0012 Airfoil Vorticity Contours

Mach 0.1, Angle of Attack 20°, Re = 10000
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Chaotic Sensitivity Analysis Issues NACA 0012

NACA 0012 Airfoil Vorticity Contours

Mach 0.1, Angle of Attack 20°, Re = 10000
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Chaotic Sensitivity Analysis Issues NACA 0012

Drag Coefficient Time History

Aperiodicity indicates that the flow is chaotic
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NACA 0012
Adjoint Residual L2 Norm
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Least Squares Sensitivity Method: The Basics

@ A chaotic system has at least three different modes.
e An unstable mode, associated with a positive Lyapunov Exponent.
o A stable mode, associated with a negative Lyapunov Exponent.
e A neutrally stable mode, associated with a zero Lyapunov
Exponent.
@ The unstable mode is responsible for the divergence of the
tangent and adjoint equations.
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Least Squares Sensitivity Method: The Basics (cont'd)

@ Solve for stable modes forwards in time and solve unstable modes
backward in time to prevent divergence of tangent and adjoint
solutions.

@ This solution is called the "Shadow Trajectory" (Wang, 2012) and
is the least divergent tangent solution.

@ Find the shadow trajectory by solving the following linearly
contrained, least squares problem:

ov  Of of
mi AL Ry Y. T
n,v(t),(;ngHVHZ’ St =ou’ T ag T 0<t<
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Shadow Trajectory

@ Divergent and Shadow trajectories for the Lorenz Attractor.
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LSS as a "Black Box"

;
J :/ J(u, s)dt, ou _ f(u, s)
A ot

Inputs:
@ Forward Solution: u;
@ Design Variable(s): s
@ Operator values f;

@ Operator design parameter sensitivity gg i

aJ
ouj
oJ
s

@ Objective Function Sensitivity:
@ Objective Function Sensitivity:

@ Jacobian matricies: %

Ouputs:
e Sensitivities: %/ B
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Least Squares Sensitivity Method Overview
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@ The KKT matrix is a large, symmetric block matrix, where each block is n
by n for an n state system. Total size is 2mn+ n+ 1 by 2mn+ n+ 1 for
mtime steps. For a discretization with a five element stencil, there are
approximately 23mn non-zero elements in the matrix.

@ For the Airfoil simulation shown earlier the KKT matrix would be Ef@:

% 10% b % 10° with 3.7 x 10'° non-zero‘elements.
Patrick J. Blonigan (MIT) 8/28/2012 25/35



il ) 2 i
Multigrid Elimination

@ New method to reduce memory usage when solving the LSS KKT
system.

@ Gaussian Elimination conducted like 1D Multigrid.

@ Eliminate every 2nd equation, reduce the system from
2mn+ n+11to n+ 1 equations.

@ No need to save coefficients on every grid.
@ Potentially Parallelizable.

@ Method can be used to solve any unsteady system and its adjoint
simultaneously.
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Schur Complement

@ The KKT matrix is symmetric indefinite, so it becomes singular on
coarser grids due to poor scaling.

@ Instead, conduct ME on the KKT system’s Schur Complement,
which is SPD (ignoring the constraint equation).

@ Original System:
I B"1[v]_ JO
B 0 A b

@ Schur Complement:
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Least Squares Sensitivity Method Multigrid Elimination

Elimination Scheme
Fine Grid Equations

Li—1Xi—2 + Di—qNji—1 + Uia Ni + fioam = bi_q (1)

Lixi—1 + DiXi + U1 + fn = b; (2)

LiviAi + Dig1 g1 + U1 Mgz + fip1n = biy4 3)
B
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Elimination Scheme

Coarse Grid Equation

Where:

Lidi—o + DA+ U//\,‘+2 + fim = by

L= —L; D_ 1Li—

D - LD,1u,1+D UD L
U = —UD;\ Uy

fl = _LiD,'J-] fl—1 + f UI ,+1 I+1
b, = —L,'DI-:11 bi_1+ b — U,DI+1b,+1

@ A similar method is used to restrict the constraint equation and the
equation for the long-time averaged gradient of interest.
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LSS and ME applied to the Lorenz Equations

@ Lorenz Equations:

ax dy az
dt (y X) E (r_ )_ya E_Xy_bz
@ Long time averaged z gradients computed by LSS/ME:
az az az
o = 0.1545, o = 0.9709, b= —1.8014

@ Gradients computed by finite difference/linear regression:
az dz az
7 0.16 £0.02, a = 1.01 +0.04, b= —-1.68 £0.15
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Avoiding inverting Matrices

@ ME can be implemented so that no Jacobian matrices need to be
inverted

@ Consider the following system:

Dy U 0 A by
L, D U X | =1 b
0 L3 D3 )\3 b3

@ The system is restricted using ME:
A =D
with:

A= —LpD;"Ui+ Do — UpD5 'Ly
b= —LoD;'by + by — U.D; 'bs B
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Muitigrid Elimination
Avoiding inverting Matrices (cont’d)

@ This system can be solved iteratively, using some preconditioner
P:
PAXx = b — AXkx, Xki1 = Xk + AX

Where xi is the value of A\, after k iterations.
@ Decompose Axy into three parts:

Axi = —LaDy Ui xi + Dox — UaDg ' Laxk = oo+ B+
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Muitigrid Elimination
Avoiding inverting Matrices (cont’d)

@ Consider a:
LoDy Ui xi = «

@ Compute yx = Uy xk:
LoDy =«

@ Next, define zx = Dy yx. ltertively solve:
D1z = y

@ Use the result to compute a:
a=—Lrz

@ This idea can be applied to a much larger system and allows ME
to be conducted without inverting any Jacobian matricies. B el
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Conclusion

@ Traditional sensitivity analysis methods are unable to compute
sensitivities of long-time averaged quantities in CFD simulations.

@ The LSS method could compute these quantities in an efficient
manner if applied with Multigrid elimination.

@ Future Work
e Further develop and implement ME without inverting Jacobians,
ideally in C, C++ or Fortran.
o Apply LSS/ME to the KS equation.
o Validate LSS on aerodynamic test cases.
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Conclusion
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